Copied to
clipboard

G = C3xC42.29C22order 192 = 26·3

Direct product of C3 and C42.29C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xC42.29C22, C8:C4:11C6, C4:1D4.5C6, C42.C2:3C6, D4:C4:19C6, (C2xC12).341D4, C42.27(C2xC6), C22.111(C6xD4), C12.272(C4oD4), C6.146(C8:C22), (C2xC12).946C23, (C2xC24).336C22, (C4xC12).269C22, C6.75(C4.4D4), (C6xD4).201C22, C4:C4.21(C2xC6), (C2xC8).57(C2xC6), (C3xC8:C4):25C2, C4.17(C3xC4oD4), (C2xC4).42(C3xD4), (C2xD4).24(C2xC6), (C2xC6).667(C2xD4), C2.21(C3xC8:C22), (C3xD4:C4):42C2, (C3xC4:1D4).12C2, (C3xC42.C2):20C2, C2.13(C3xC4.4D4), (C3xC4:C4).241C22, (C2xC4).121(C22xC6), SmallGroup(192,923)

Series: Derived Chief Lower central Upper central

C1C2xC4 — C3xC42.29C22
C1C2C4C2xC4C2xC12C6xD4C3xD4:C4 — C3xC42.29C22
C1C2C2xC4 — C3xC42.29C22
C1C2xC6C4xC12 — C3xC42.29C22

Generators and relations for C3xC42.29C22
 G = < a,b,c,d,e | a3=b4=c4=d2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1, ebe-1=bc2, dcd=c-1, ce=ec, ede-1=b2c-1d >

Subgroups: 242 in 110 conjugacy classes, 50 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, C23, C12, C12, C2xC6, C2xC6, C42, C4:C4, C4:C4, C2xC8, C2xD4, C2xD4, C24, C2xC12, C2xC12, C2xC12, C3xD4, C22xC6, C8:C4, D4:C4, C42.C2, C4:1D4, C4xC12, C3xC4:C4, C3xC4:C4, C2xC24, C6xD4, C6xD4, C42.29C22, C3xC8:C4, C3xD4:C4, C3xC42.C2, C3xC4:1D4, C3xC42.29C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C4oD4, C3xD4, C22xC6, C4.4D4, C8:C22, C6xD4, C3xC4oD4, C42.29C22, C3xC4.4D4, C3xC8:C22, C3xC42.29C22

Smallest permutation representation of C3xC42.29C22
On 96 points
Generators in S96
(1 67 19)(2 68 20)(3 69 21)(4 70 22)(5 71 23)(6 72 24)(7 65 17)(8 66 18)(9 30 58)(10 31 59)(11 32 60)(12 25 61)(13 26 62)(14 27 63)(15 28 64)(16 29 57)(33 73 81)(34 74 82)(35 75 83)(36 76 84)(37 77 85)(38 78 86)(39 79 87)(40 80 88)(41 52 89)(42 53 90)(43 54 91)(44 55 92)(45 56 93)(46 49 94)(47 50 95)(48 51 96)
(1 44 77 26)(2 41 78 31)(3 46 79 28)(4 43 80 25)(5 48 73 30)(6 45 74 27)(7 42 75 32)(8 47 76 29)(9 23 96 33)(10 20 89 38)(11 17 90 35)(12 22 91 40)(13 19 92 37)(14 24 93 34)(15 21 94 39)(16 18 95 36)(49 87 64 69)(50 84 57 66)(51 81 58 71)(52 86 59 68)(53 83 60 65)(54 88 61 70)(55 85 62 67)(56 82 63 72)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)
(1 26)(2 47)(3 32)(4 45)(5 30)(6 43)(7 28)(8 41)(9 23)(10 36)(11 21)(12 34)(13 19)(14 40)(15 17)(16 38)(18 89)(20 95)(22 93)(24 91)(25 74)(27 80)(29 78)(31 76)(33 96)(35 94)(37 92)(39 90)(42 79)(44 77)(46 75)(48 73)(49 83)(50 68)(51 81)(52 66)(53 87)(54 72)(55 85)(56 70)(57 86)(58 71)(59 84)(60 69)(61 82)(62 67)(63 88)(64 65)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,67,19)(2,68,20)(3,69,21)(4,70,22)(5,71,23)(6,72,24)(7,65,17)(8,66,18)(9,30,58)(10,31,59)(11,32,60)(12,25,61)(13,26,62)(14,27,63)(15,28,64)(16,29,57)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,52,89)(42,53,90)(43,54,91)(44,55,92)(45,56,93)(46,49,94)(47,50,95)(48,51,96), (1,44,77,26)(2,41,78,31)(3,46,79,28)(4,43,80,25)(5,48,73,30)(6,45,74,27)(7,42,75,32)(8,47,76,29)(9,23,96,33)(10,20,89,38)(11,17,90,35)(12,22,91,40)(13,19,92,37)(14,24,93,34)(15,21,94,39)(16,18,95,36)(49,87,64,69)(50,84,57,66)(51,81,58,71)(52,86,59,68)(53,83,60,65)(54,88,61,70)(55,85,62,67)(56,82,63,72), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96), (1,26)(2,47)(3,32)(4,45)(5,30)(6,43)(7,28)(8,41)(9,23)(10,36)(11,21)(12,34)(13,19)(14,40)(15,17)(16,38)(18,89)(20,95)(22,93)(24,91)(25,74)(27,80)(29,78)(31,76)(33,96)(35,94)(37,92)(39,90)(42,79)(44,77)(46,75)(48,73)(49,83)(50,68)(51,81)(52,66)(53,87)(54,72)(55,85)(56,70)(57,86)(58,71)(59,84)(60,69)(61,82)(62,67)(63,88)(64,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,67,19)(2,68,20)(3,69,21)(4,70,22)(5,71,23)(6,72,24)(7,65,17)(8,66,18)(9,30,58)(10,31,59)(11,32,60)(12,25,61)(13,26,62)(14,27,63)(15,28,64)(16,29,57)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,52,89)(42,53,90)(43,54,91)(44,55,92)(45,56,93)(46,49,94)(47,50,95)(48,51,96), (1,44,77,26)(2,41,78,31)(3,46,79,28)(4,43,80,25)(5,48,73,30)(6,45,74,27)(7,42,75,32)(8,47,76,29)(9,23,96,33)(10,20,89,38)(11,17,90,35)(12,22,91,40)(13,19,92,37)(14,24,93,34)(15,21,94,39)(16,18,95,36)(49,87,64,69)(50,84,57,66)(51,81,58,71)(52,86,59,68)(53,83,60,65)(54,88,61,70)(55,85,62,67)(56,82,63,72), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96), (1,26)(2,47)(3,32)(4,45)(5,30)(6,43)(7,28)(8,41)(9,23)(10,36)(11,21)(12,34)(13,19)(14,40)(15,17)(16,38)(18,89)(20,95)(22,93)(24,91)(25,74)(27,80)(29,78)(31,76)(33,96)(35,94)(37,92)(39,90)(42,79)(44,77)(46,75)(48,73)(49,83)(50,68)(51,81)(52,66)(53,87)(54,72)(55,85)(56,70)(57,86)(58,71)(59,84)(60,69)(61,82)(62,67)(63,88)(64,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,67,19),(2,68,20),(3,69,21),(4,70,22),(5,71,23),(6,72,24),(7,65,17),(8,66,18),(9,30,58),(10,31,59),(11,32,60),(12,25,61),(13,26,62),(14,27,63),(15,28,64),(16,29,57),(33,73,81),(34,74,82),(35,75,83),(36,76,84),(37,77,85),(38,78,86),(39,79,87),(40,80,88),(41,52,89),(42,53,90),(43,54,91),(44,55,92),(45,56,93),(46,49,94),(47,50,95),(48,51,96)], [(1,44,77,26),(2,41,78,31),(3,46,79,28),(4,43,80,25),(5,48,73,30),(6,45,74,27),(7,42,75,32),(8,47,76,29),(9,23,96,33),(10,20,89,38),(11,17,90,35),(12,22,91,40),(13,19,92,37),(14,24,93,34),(15,21,94,39),(16,18,95,36),(49,87,64,69),(50,84,57,66),(51,81,58,71),(52,86,59,68),(53,83,60,65),(54,88,61,70),(55,85,62,67),(56,82,63,72)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96)], [(1,26),(2,47),(3,32),(4,45),(5,30),(6,43),(7,28),(8,41),(9,23),(10,36),(11,21),(12,34),(13,19),(14,40),(15,17),(16,38),(18,89),(20,95),(22,93),(24,91),(25,74),(27,80),(29,78),(31,76),(33,96),(35,94),(37,92),(39,90),(42,79),(44,77),(46,75),(48,73),(49,83),(50,68),(51,81),(52,66),(53,87),(54,72),(55,85),(56,70),(57,86),(58,71),(59,84),(60,69),(61,82),(62,67),(63,88),(64,65)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A···6F6G6H6I6J8A8B8C8D12A12B12C12D12E12F12G12H12I12J12K12L24A···24H
order122222334444446···66666888812121212121212121212121224···24
size111188112244881···1888844442222444488884···4

48 irreducible representations

dim1111111111222244
type+++++++
imageC1C2C2C2C2C3C6C6C6C6D4C4oD4C3xD4C3xC4oD4C8:C22C3xC8:C22
kernelC3xC42.29C22C3xC8:C4C3xD4:C4C3xC42.C2C3xC4:1D4C42.29C22C8:C4D4:C4C42.C2C4:1D4C2xC12C12C2xC4C4C6C2
# reps1141122822244824

Matrix representation of C3xC42.29C22 in GL8(F73)

10000000
01000000
00800000
00080000
00001000
00000100
00000010
00000001
,
027000000
270000000
007200000
000720000
000041352121
00003844052
00004747670
00005363867
,
720000000
072000000
007200000
000720000
000007200
00001000
0000525212
00002107272
,
027000000
460000000
00100000
0052720000
000032385252
00003844052
00004667612
00006813564
,
270000000
027000000
0052710000
002210000
00004667612
0000262660
000041352121
00002361653

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,41,38,47,53,0,0,0,0,35,44,47,6,0,0,0,0,21,0,67,38,0,0,0,0,21,52,0,67],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,52,21,0,0,0,0,72,0,52,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,2,72],[0,46,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,1,52,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,32,38,46,68,0,0,0,0,38,44,67,1,0,0,0,0,52,0,6,35,0,0,0,0,52,52,12,64],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,52,2,0,0,0,0,0,0,71,21,0,0,0,0,0,0,0,0,46,26,41,23,0,0,0,0,67,26,35,61,0,0,0,0,6,6,21,6,0,0,0,0,12,0,21,53] >;

C3xC42.29C22 in GAP, Magma, Sage, TeX

C_3\times C_4^2._{29}C_2^2
% in TeX

G:=Group("C3xC4^2.29C2^2");
// GroupNames label

G:=SmallGroup(192,923);
// by ID

G=gap.SmallGroup(192,923);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,1016,1094,1059,142,4204,172,6053,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1,e*b*e^-1=b*c^2,d*c*d=c^-1,c*e=e*c,e*d*e^-1=b^2*c^-1*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<